Bibliography
Abatzoglou T, O'Donnell B [1982] Minimization by Coordinate Descent. Journal of Optimization Theory and Applications 36: 163--174
Argyros IK, Szidarovszky F [1993] The Theory and Application of Iteration Methods. CRC Press, Boca Raton
Berge C [1965] Espaces Topologiques, Fonctions Multivoques. Deuxième édition, Dunod, Paris
Berge C [1997] Topological Spaces. Dover Publications, Mineola
Berinde V [2007] Iterative Approximation of Fixed Points. (Second Edition) Berlin, Springer.
Böhning D, Lindsay BG [1988] Monotonicity of Quadratic Approximation Algorithms. Annals of the Institute of Statiatical Mathematics 40:641-663
Borg I, Groenen PJF [2005] Modern Multidimensional Scaling. Second Edition, Springer, New York
Browne MW [1987] The Young-Householder Algorithm and the Least Squares Multdimensional Scaling of Squared Distances Journal of Classification 4:175-190
Bryer J [2014] Rgitbook: Gitbook Projects with R Markdown. Package version 0.9
Bunch JR, Nielsen CP [1978] Updating the Singular Value Decomposition. Numerische Mathematik 31:111-129
Bunch JR, Nielsen CP, Sorensen DC [1978] Rank-one Modification of the Symmetric Eigenproblem. Numerische Matematik 31:31-48
Céa J [1968] Les Méthodes de ``Descente'' dans la Theorie de l'Optimisation. Revue Francaise d'Automatique, d'Informatique et de Recherche Opérationelle 2:79-102
Céa J [1970] Recherche Numérique d'un Optimum dans un Espace Produit. In Colloquium on Methods of Optimization. Springer, New York
Céa J, Glowinski R [1973] Sur les Méthodes d'Optimisation par Rélaxation. Revue Francaise d'Automatique, d'Informatique et de Recherche Opérationelle 7:5-32
De Leeuw J [1968] Nonmetric Discriminant Analysis. Department of Data Theory, Leiden University, Research Note 06-68
De Leeuw J [1975] An Alternating Least Squares Approach to Squared Distance Scaling Unpublished, probably lost forever
De Leeuw J [1977] Applications of Convex Analysis to Multidimensional Scaling. In: Barra JR, Brodeau F, Romier G, Van Cutsem B (eds) Recent Developments in Statistics Amsterdam, North Holland Publishing Company
De Leeuw J [1982] Generalized Eigenvalue Problems with Positive Semidefinite Matrices. Psychometrika 47:87-94
De Leeuw J [1988] Multivariate Analysis with Linearizable Regressions. Psychometrika 53:437-454
De Leeuw J [1994] Block Relaxation Algorithms in Statistics. In: Bock HH, Lenski W, Richter MM (eds) Information Systems and Data Analysis. Springer, Berlin
De Leeuw J [2004] Least Squares Optimal Scaling for Partially Observed Linear Systems. In Van Montfort K, Oud J, Satorra A (eds) Recent Developments on Structural Equation Models. Dordrecht, Kluwer
De Leeuw J [2006] Principal Component Analysis of Binary Data by Iterated Singular Value Decomposition. Computational Statiatics and Data Analysis 50:21-39
De Leeuw J [2007] Derivatives of Generalized Eigen Systems with Applications. Department of Statistics UCLA, Preprint 528
De Leeuw J [2007b] Minimizing the Cartesian Folium. Department of Statistics UCLA, Unpublished
De Leeuw J [2008a] Derivatives of Fixed-Rank Approximations. Department of Statistics UCLA, Preprint 547
De Leeuw J [2008b] Rate of Convergence of the Arithmetic-Geometric Mean Process. Department of Statistics UCLA, Preprint 550
De Leeuw J, Heiser WJ [1982] Theory of Multidimensional Scaling. In Krishnaiah PR, Kanal L (eds) Handbook of Statistics. Volume II, North Holland Publishing Co, Amsterdam
De Leeuw J, Lange K [2009] Sharp Quadratic Majorization in One Dimension. Computational Statistics and Data Analysis 53:2471-2484
De Leeuw J , Sorenson K [2012] Derivatives of the Procrustus Transformation with Applications. Department of Statistics UCLA, Unpublished
Delfour MC [2012] Introduction to Optimization and Semidifferential Calculus. Philadelphia, SIAM
Dempster AP, Laird NM, Rubin DB [1977] Maximum Likelihood for Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society B39:1-38.
Demyanov VF [2007] Nonsmooth Optimization. In Di Pillo G, Schoen F (eds) Nonlinear Optimization. Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 1-7, 2007 Springer, New York
Demyanov VF [2009] Dini and Hadamard Derivatives in Optimization. In Floudas CA , Pardalos PM (eds) Encyclopedia of Optimization. Revised and expanded edition, Springer, New York
D'Esopo DA [1959] A Convex Programming Procedure. Naval Research Logistic Quarterly 6:33-42
Dinkelbach W [1967] On Nonlinear Fractional Programming. Management Science 13:492-498
Dontchev AL, Rockafellar RT [2014] Implicit Functions and Solution Mappings. Second Edition, Springer, New York
Elkin RM [1968] Convergence Theorems for Gauss-Seidel and other Minimization Algorithms. Technical Report 68-59, Computer Sciences Center, University of Maryland
Forsythe GE, Golub GH [1965] On the Stationary Values of a Second Degree Polynomial on the Unit Sphere. Journal of the Society for Industrial and Applied Mathematics 13:1050-1068
Gander W [1981] Least Squares with a Quadratic Constraint. Numerische Mathematik 36:291-307
Gifi A [1990] Nonlinear Multivariate Analysis. Chichester, Wiley
Golub GH [1973] Some Modified Matrix Eigenvalue Problems. SIAM Review 15:318-334
Groenen PJF, Giaquinto P, Kiers HAL [2003] Weighted Majorization Algorithms for Weighted Least Squares Decomposition Models. Econometric Institute Report EI 2003-09, Erasmus University, Rotterdam
Groenen PJF, Nalbantov G, Bioch JC [2007] Nonlinear Support Vector Machines Through Iterative Majorization and I-Splines. In Lenz HJ, Decker R (eds) Studies in Classification, Data Analysis, and Knowledge Organization. Springer, New York
Groenen PJF, Nalbantov G, Bioch JC [2008] SVM-Maj: a Majorization Approach to Linear Support Vector Machines with Different Hinge Errors. Advances in Data Analysis and Classification 2:17-43
Harman HH, Jones WH [1966] Factor Analysis by Minimizing Residuals (MINRES). Psychometrika 31:351-368
Heiser WJ [1986] A Majorization Algorithm for the Reciprocal Location Problem. Department of Data Theory, Leiden University, Report RR-86-12
Heiser WJ [1987] Correspondence Analysis with Least Absolute Residuals. Computational Statiatics and Data Analysis, 5:337-356
Heiser WJ [1995] Convergent Computation by Iterative Majorization: Theory and Applications in Multidimensional Data Analysis. In Krzanowski WJ (ed) Recent Advances in Discriptive Multivariate Analysis. Clarendon Press, Oxford
Hildreth C [1957] A Quadratic Programming Procedure. Naval Research Logistic Quarterly 14:79-84
Hunter DR, Lange K [2004] A Tutorial on MM Algorithms. American Statistician 58:30-37
Hunter DR, Li R [2005] Variable Selection Using MM Algorithms. Annals of Statistics 33:1617-1642
Jaakkola TSW, Jordan MIW [2000] Bayesian Parameter Estimation via Variational Methods. Statistical Computing 10:25-37
Kato T [1976] Perturbation Theory for Linear Operators. Second Edition, Springer, New York
Krantz SG, Parks HR [2013] The Implicit Function Theorem: History, Theory, and Applications. Springer, New York
Kruskal JB [1964a] Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis. Psychometrika 29:1-27
Kruskal JB [1964b] Nonmetric Multidimensional Scaling: a Numerical Method. Psychometrika 29:115-129
Kruskal JB [1965] Analysis of Factorial Experiments by Estimating Monotone Transformations of the Data. Journal of the Royal Statistical Society B27:251-263
Lange K [2013] Optimization. Second Edition, Springer, New York
Lange K [20xx] MM Algorithms. Book in progress
Lange K, Chi EC, Zhou, H [2014] A Brief Survey of Modern Optimization for Statisticians. International Statistical Review, 82:46-70
Lange K, Hunter DR, Yang I [2000] Optimization Transfer Using Surrogate Objective Functions. Journal of Computational and Graphical Statistics 9:1-20
Lipp T, Boyd S [2014] [Variations and Extensions of the Convex-Concave Procedure.] (http://web.stanford.edu/~boyd/papers/pdf/cvx_ccv.pdf) (as yet) Unpublished paper, Stanford University
Magnus JR, Neudecker H [1999] Matrix Differential Calculus with Applications in Statistics and Econometrics. (Revised Edition) New York, Wiley
Mair P, De Leeuw J [2010] A General Framework for Multivariate Analysis with Optimal Scaling: The R Package aspect. Journal of Statistical Software, 32(9):1-23
Melman A [1995] Numerical Solution of a Secular Equation. Numerische Mathematik 69:483-493
Melman A [1997] A Unifying Convergence Analysis of Second-Order Methods for Secular Equations. Mathematics of Computation 66:333-344
Melman A [1998] Analysis of Third-order Methods for Secular Equations. Mathematics of Computation 67:271-286
Mönnigmann M [2011] Fast Calculation of Spectral Bounds for Hessian Matrices on Hyperrectangles. SIAM Journalof Matrix Analysis and Applications 32:1351-1366
Nesterov Y, Polyak BT [2006] Cubic Regularization of Newton Method and its Global Performance. Mathematical Programming, A108:177-205
Oberhofer W, Kmenta J [1974] A General Procedure for Obtaining Maximum Likelihood Estimates in Generalized Regression Models. Econometrica 42:579-590
Ortega JM, Rheinboldt WC [1970] Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York
Ortega JM, Rheinboldt WC [1970] Local and Global Convergence of Generalized Linear Iterations. In Ortega JM, Rheinboldt WC (eds) Numerical Solutions of Nonlinear Problems. Philadelphia, SIAM
Ostrowski AM [1966] Solution of Equations and Systems of Equations. (Second Edition) Academic Press, New York
Penot J-P [2013] Calculus without Derivatives. New York, Springer
Parring AM [1992] About the Concept of the Matrix Derivative. Linear Algebra and its Applications 176:223-235
Ramsay JO [1977] Maximum Likelihood Estimation in Multidimensional Scaling. Psychometrika 42:241-266
R Core Team [2015]. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rockafellar RT [1970] Convex Analysis. Princeton University Press, Princeton
Rockafellar RT, Wets RJB [1998] Variational Analysis. Springer, New York
Roskam EEChI [1968] Metric Analysis of Ordinal Data in Psychology. VAM, Voorschoten, Netherlands
Schechter S [1962] Iteration Methods for Nonlinear Problems. Transactions of the American Mathematical Society 104:179-189
Schechter S [1968] Relaxation Methods for Convex Problems. SIAM Journal Numerical Analysis 5:601-612
Schechter S [1970] Minimization of a Convex Function by Relaxation. In Abadie J (ed) Integer and nonlinear programming. North Holland Publishing Company, Amsterdam
Shapiro A [1990] On Concepts of Directional Differentiability. Journal of Optimization Theory and Applications 66:477-487
Schirotzek W [2007] Nonsmooth Analysis. Springer, New York
Smart DR [1974] Fixed Point Theorems. Cambridge Tracts in Mathematics 66, Cambridge University Press, Cambridge
Spivak M [1965] Calculus on Manifolds. Westview Press, Boulder
Sriperumbudur BK, Lanckriet GRG [2012] A Proof of Convergence of the Concave-Convex Procedure Using Zangwill’s Theory. Neural Computation 24:1391–1407
Takane Y [1977] On the Relations among Four Methods of Multidimensional Scaling. Behaviormetrika, 4:29-42
Takane Y, Young FW, De Leeuw J [1977] Nonmetric Individual Differences in Multidimensional Scaling: An Alternating Least Squares Method with Optimal Scaling Features Psychometrika 42:7-67
Theussl S, Borchers, HW [2014] CRAN Task View: Optimization and Mathematical Programming.
Thomson GH [1934] Hotelling's Method Modified to Give Spearman's g. Journal of Educational Psychology 25:366-374
Torgerson WS [1958] Theory and Methods of Scaling. Wiley, New York
Van Den Burg GJJ, Groenen PJF [2014] GenSVM: A Generalized Multiclass Support Vector Machine. Econometric Institute Report EI 2014-33, Erasmus University, Rotterdam
Van der Heijden PGM, Sijtsma K [1996] Fifty Years of Measurement and Scaling in the Dutch Social Sciences. Statistica Neerlandica 50:111-135.
Van Ruitenburg J [2005] Algorithms for Parameter Estimation in the Rasch Model. CITO Measurement and Research Department Reports 2005-04, Arnhem, Netherlands
Varadhan R [2014] Numerical Optimization in R
: Beyond optim
. Journal of Statistical Software, 60: issue 1
Verboon P, Heiser WJ Resistant Lower Rank Approximation of Matrices by Iterative Majorization. Computational Statistics and Data Analysis 18:457-467
Voß H, Eckhardt U [1980] Linear Convergence of Generalized Weiszfeld's Method. Computing 25:243-251
Wainer H, Morgan A, Gustafsson JE [1980] A Review of Estimation Procedures for the Rasch Model with an Eye toward Longish Tests. Journal of Educational Statistics 5:35-64
Weiszfeld E [1937] _Sur le Point par lequel la Somme des Distances de n Points Donnès est Minimum.- Tôhoku Mathematics Journal 43:355--386
Weiszfeld E, Plastria F [2009] On the Point for which the Sum of the Distances to n Given Points is Minimum. Annals of Operations Research 167:7-41
Wilkinson GN [1958] Estimation of Missing Values for the Analysis of Incomplete Data. Biometrics 14:257-286
Wilkinson JH [1965] The Algebraic Eigenvalue Problem. Clarendon Press, Oxford
Wong CS [1985] On the Use of Differentials in Statistics. Linear Algebra and its Applications 70:285-299
Xie Y [2013] Dynamic Documents with R and knitr. Boca Raton, Chapman and Hall/CRC.
Yates, F [1933] The Analysis of Replicated Experiments when the Field Results are Incomplete. Empirical Journal of Experimental Agriculture, 1:129-142.
Yen E-H, Peng N, Wang P-W, Lin S-D [2012] [On Convergence Rate of Concave-Convex Procedure.] (http://opt-ml.org/oldopt/papers/opt2012_paper_10.pdf) Paper presented at 5th NIPS Workshop on Optimization for Machine Learning, Lake Tahoe, December 8 2012
Young FW [1981] Quantitative analysis of qualitative data. Psychometrika 46:357-388
Young FW, De Leeuw J, Takane Y [1980] Quantifying Qualitative Data. In: Lantermann ED, Feger H (eds) Similarity and Choice. Papers in Honor of Clyde Coombs, Hans Huber, Bern
Yuille AL, Rangarajan A [2003] The Concave-Convex Procedure. Neural Computation 15:915–936
Zangwill WI [1969] Nonlinear Programming: A Unified Approach. Prentice Hall, Englewood Cliffs